elphick.sklearn_viz.features.outlier_detection.plot_outlier_matrix
- elphick.sklearn_viz.features.outlier_detection.plot_outlier_matrix(x, pca_spec=0, p_val=0.001, principal_components=False)[source]
Detect and plot outliers
- Parameters:
x (
DataFrame
) – X values for outlier detection.pca_spec (
Union
[float
,int
]) – If zero, pca is not used. For integers (n) > 0 outlier detection is performed on the top n principal components. For values (f) < 1, outlier detection is performed on the number of principal components that explain f% of the variance.p_val (
float
) – the p-value threshold for outlier detection.principal_components (
bool
) – If True (and pca_spec is not 0) the principal components will be plotted. Otherwise, will plot in the original feature space.
- Return type:
Figure