elphick.sklearn_viz.features.outlier_detection.OutlierDetection
- class elphick.sklearn_viz.features.outlier_detection.OutlierDetection(x, pca_spec=0, standardise=False, p_val=0.001)[source]
- __init__(x, pca_spec=0, standardise=False, p_val=0.001)[source]
- Parameters:
x (
DataFrame
) – X values for outlier detection.pca_spec (
Union
[float
,int
]) – If zero, pca is not used. For integers (n) > 0 outlier detection is performed on the top n principal components. For values (f) < 1, outlier detection is performed on the number of principal components that explain f% of the variance.standardise (
bool
) – If True, standardise the data prior to PCA, where vectors are transformed to zero mean and unit variance.p_val (
float
) – the p-value threshold for outlier detection.
Methods
__init__
(x[, pca_spec, standardise, p_val])- type x:
DataFrame
plot_outlier_matrix
([principal_components])- rtype:
Figure
Attributes
data