Interval Data

This example adds a second dimension. The second dimension is an interval, of the form interval_from, interval_to. It is also known as binned data, where each β€˜bin’ is bounded between and upper and lower limit.

An interval is relevant in geology, when analysing drill hole data.

Intervals are also encountered in metallurgy, but in that discipline they are often called fractions, e.g. size fractions. In that case the typical nomenclature is size_retained, size passing, since the data originates from a sieve stack.

import logging

import pandas as pd
import plotly.io
from matplotlib import pyplot as plt

from elphick.geomet import Sample, IntervalSample
from elphick.geomet.data.downloader import Downloader
from elphick.geomet.utils.pandas import weight_average
import plotly.graph_objects as go
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s',
                    datefmt='%Y-%m-%dT%H:%M:%S%z',
                    )

Create a MassComposition object

We get some demo data in the form of a pandas DataFrame We create this object as 1D based on the pandas index

iron_ore_sample_data: pd.DataFrame = Downloader().load_data(datafile='iron_ore_sample_A072391.zip', show_report=False)
df_data: pd.DataFrame = iron_ore_sample_data
df_data.head()
index mass_dry H2O MgO MnO Al2O3 P Fe SiO2 TiO2 CaO Na2O K2O DHID interval_from interval_to
0 6 2.12 0.35 0.07 0.0 1.48 0.019 64.30 3.23 0.080 0.04 0.01 0.03 CBS02 26.60 26.85
1 7 2.06 0.23 0.06 0.0 1.28 0.017 64.91 2.90 0.082 0.04 0.01 0.03 CBS02 26.85 27.10
2 9 1.91 0.23 0.06 0.0 1.01 0.016 65.09 2.39 0.059 0.03 0.01 0.02 CBS02 27.70 28.00
3 10 1.96 0.36 0.06 0.0 0.99 0.022 65.03 2.22 0.057 0.04 0.01 0.02 CBS02 28.00 28.30
4 12 2.06 0.40 0.05 0.0 0.75 0.016 65.87 1.69 0.040 0.03 0.01 0.01 CBS02 28.60 28.95


obj_mc: Sample = Sample(df_data, name='Drill program')
obj_mc
<elphick.geomet.sample.Sample object at 0x7f8eac97aa40>
obj_mc.aggregate
mass_wet mass_dry H2O MgO MnO Al2O3 P Fe SiO2 TiO2 CaO Na2O K2O
0 2029.617808 1981.688 2.361519 0.080513 0.149219 1.773585 0.044628 60.443938 2.82721 0.062978 0.125071 0.015877 0.013164


Use the normal pandas groupby-apply as needed. Here we leverage the weight_average function from utils.pandas

hole_average: pd.DataFrame = obj_mc.data.groupby('DHID').apply(weight_average)
hole_average
/home/runner/work/geometallurgy/geometallurgy/examples/02_interval_sample/01_interval_sample.py:58: DeprecationWarning:

DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
weight_average mass_dry MgO MnO Al2O3 P Fe SiO2 TiO2 CaO Na2O K2O
DHID
CBS02 46.310 0.055636 0.000000 1.029685 0.022764 64.656675 2.589849 0.053834 0.029160 0.010436 0.017296
CBS03 226.250 0.132968 0.038134 1.399500 0.046587 60.297271 3.653106 0.052016 0.699112 0.030318 0.019871
CBS04 344.680 0.088788 0.126484 1.513147 0.038461 60.289083 3.319658 0.050986 0.093096 0.001773 0.011788
CBS10 304.690 0.044836 0.091520 1.963728 0.059062 61.001839 2.949455 0.061461 0.060045 0.014310 0.012509
CBS12 493.968 0.090723 0.247394 1.854824 0.032990 60.572344 2.491186 0.067683 0.045545 0.016941 0.014323
CBS13 565.790 0.066832 0.165065 1.969400 0.051777 59.839565 2.443914 0.072125 0.027301 0.019054 0.010321


We will now make a 2D dataset using DHID and the intervals.

df_data['DHID'] = df_data['DHID'].astype('category')
df_data = df_data.reset_index(drop=True).set_index(['DHID', 'interval_from', 'interval_to'])

obj_mc_2d: IntervalSample = IntervalSample(df_data, name='Drill program')
print(obj_mc_2d)
IntervalSample: Drill program
{'mass_wet': {0: 2029.6178076448032}, 'mass_dry': {0: 1981.688}, 'H2O': {0: 2.3615188763258583}, 'MgO': {0: 0.08051321903347046}, 'MnO': {0: 0.14921928174364477}, 'Al2O3': {0: 1.773585095131019}, 'P': {0: 0.044627670955266416}, 'Fe': {0: 60.443937895370006}, 'SiO2': {0: 2.827210176374888}, 'TiO2': {0: 0.06297808534945964}, 'CaO': {0: 0.12507133312610258}, 'Na2O': {0: 0.015876646576050316}, 'K2O': {0: 0.013163565606694896}}
obj_mc_2d.aggregate
mass_wet mass_dry H2O MgO MnO Al2O3 P Fe SiO2 TiO2 CaO Na2O K2O
0 2029.617808 1981.688 2.361519 0.080513 0.149219 1.773585 0.044628 60.443938 2.82721 0.062978 0.125071 0.015877 0.013164


obj_mc_2d.data.groupby('DHID').apply(weight_average, **{'mass_wet': 'mass_wet', 'moisture_column_name': 'H2O'})
weight_average mass_wet mass_dry h2o MgO MnO Al2O3 P Fe SiO2 TiO2 CaO Na2O K2O
DHID
CBS02 46.614043 46.310 0.652257 0.055636 0.000000 1.029685 0.022764 64.656675 2.589849 0.053834 0.029160 0.010436 0.017296
CBS03 229.414089 226.250 1.379204 0.132968 0.038134 1.399500 0.046587 60.297271 3.653106 0.052016 0.699112 0.030318 0.019871
CBS04 347.440438 344.680 0.794507 0.088788 0.126484 1.513147 0.038461 60.289083 3.319658 0.050986 0.093096 0.001773 0.011788
CBS10 306.500146 304.690 0.590586 0.044836 0.091520 1.963728 0.059062 61.001839 2.949455 0.061461 0.060045 0.014310 0.012509
CBS12 506.098042 493.968 2.396777 0.090723 0.247394 1.854824 0.032990 60.572344 2.491186 0.067683 0.045545 0.016941 0.014323
CBS13 593.551050 565.790 4.677112 0.066832 0.165065 1.969400 0.051777 59.839565 2.443914 0.072125 0.027301 0.019054 0.010321


View some plots

fig: go.Figure = obj_mc_2d.plot_parallel(color='DHID')
plotly.io.show(fig)
obj_mc_2d.query('DHID=="CBS02"').reset_index('DHID').plot_intervals(variables=['mass_dry', 'Fe', 'SiO2', 'Al2O3'],
                                                                    cumulative=False)


Total running time of the script: (0 minutes 2.988 seconds)

Gallery generated by Sphinx-Gallery