Source code for elphick.geomet.utils.interp

from typing import Optional, Iterable, Union

import numpy as np
import pandas as pd
from scipy.interpolate import pchip_interpolate

from elphick.geomet.utils.pandas import composition_to_mass, mass_to_composition, weight_average


[docs] def mass_preserving_interp(df_intervals: pd.DataFrame, interval_edges: Union[Iterable, int], include_original_edges: bool = True, precision: Optional[int] = None, mass_wet: str = 'mass_wet', mass_dry: str = 'mass_dry', interval_data_as_mass: bool = False) -> pd.DataFrame: """Interpolate with zero mass loss using pchip This interpolates data_vars independently for a single dimension (coord) at a time. The function will: - convert from relative composition (%) to absolute (mass) (subject to interval_data_as_mass argument) - convert the index from interval to a float representing the right edge of the interval - cumsum to provide monotonic increasing data - interpolate with a pchip spline to preserve mass - diff to recover the original fractional data - reconstruct the interval index from the right edges - convert from absolute to relative composition Args: df_intervals: A pd.DataFrame with a single interval index, with mass, composition context. interval_edges: The values of the new grid (interval edges). If an int, will up-sample by that factor, for example the value of 10 will automatically define edges that create 10 x the resolution (up-sampled). include_original_edges: If True include the original index edges in the result precision: Number of decimal places to round the index (edge) values. mass_wet: The wet mass column, not optional. Consider solve_mass_moisture prior to this call if needed. mass_dry: The dry mass column, not optional. Consider solve_mass_moisture prior to this call if needed. interval_data_as_mass: If True, the data is assumed to be mass data, not composition data, negating the need to convert to mass. Returns: """ if not isinstance(df_intervals.index, pd.IntervalIndex): raise NotImplementedError(f"The index `{df_intervals.index}` of the dataframe is not a pd.Interval. " f"Only 1D interval indexes are valid") composition_in: pd.DataFrame = df_intervals.copy() if isinstance(interval_edges, int): grid_vals = _upsample_grid_by_factor(indx=composition_in.sort_index().index, factor=interval_edges) else: grid_vals = np.sort(np.array(interval_edges)) if precision is not None: composition_in.index = pd.IntervalIndex.from_arrays(np.round(df_intervals.index.left, precision), np.round(df_intervals.index.right, precision), closed=df_intervals.index.closed, name=df_intervals.index.name) grid_vals = np.round(grid_vals, precision) if include_original_edges: original_edges = np.hstack([df_intervals.index.left, df_intervals.index.right]) grid_vals = np.sort(np.unique(np.hstack([grid_vals, original_edges]))) if not isinstance(grid_vals, np.ndarray): grid_vals = np.array(grid_vals) if not interval_data_as_mass: # convert from relative composition (%) to absolute (mass) mass_in: pd.DataFrame = composition_to_mass(composition_in, mass_wet=mass_wet, mass_dry=mass_dry) else: mass_in: pd.DataFrame = composition_in.copy() # convert the index from interval to a float representing the right edge of the interval mass_in.index = mass_in.index.right # add a row of zeros mass_in = pd.concat( [mass_in, pd.Series(0, index=mass_in.columns, name=composition_in.index.left.min()).to_frame().T], axis=0).sort_index(ascending=True) # cumsum to provide monotonic increasing data mass_cum: pd.DataFrame = mass_in.cumsum() # if the new grid extrapolates (on the coarse side), mass will be lost, so we assume that when extrapolating. # the mass in the extrapolated fractions is zero. By inserting these records the spline will conform. x_extra = grid_vals[grid_vals > mass_cum.index.max()] if x_extra: cum_max: pd.Series = mass_cum.iloc[-1, :] mass_cum = mass_cum.reindex(index=mass_cum.index.append(pd.Index(x_extra))) # reindex to enable insert mass_cum.loc[x_extra, :] = cum_max.values # interpolate with a pchip spline to preserve mass chunks = [] for col in mass_cum: tmp = mass_cum[col].dropna() # drop any missing values new_vals = pchip_interpolate(tmp.index.values, tmp.values, grid_vals) chunks.append(new_vals) mass_cum_upsampled: pd.DataFrame = pd.DataFrame(chunks, index=mass_in.columns, columns=grid_vals).T # diff to recover the original fractional data mass_fractions_upsampled: pd.DataFrame = mass_cum_upsampled.diff().dropna(axis=0) # reconstruct the interval index from the grid mass_fractions_upsampled.index = pd.IntervalIndex.from_arrays(left=grid_vals[:-1], right=grid_vals[1:], closed=df_intervals.index.closed, name=df_intervals.index.name) interval_spans: dict[pd.Interval, float] = {interval: interval.right - interval.left for interval in mass_fractions_upsampled.index} zero_spans = [k for k, v in interval_spans.items() if v == 0] if len(zero_spans) > 1: raise ValueError(f"The interpolated index contains zero width intervals on left edges: {zero_spans}") # convert from absolute to relative composition res = mass_to_composition(mass_fractions_upsampled, mass_wet=mass_wet, mass_dry=mass_dry).sort_index( ascending=False) # confirm the weight average is preserved if not np.isclose(mass_in.sum().sum(), mass_fractions_upsampled.sum().sum(), rtol=1e-6): raise ValueError("The mass is not preserved in the interpolation") return res
def _upsample_grid_by_factor(indx: pd.IntervalIndex, factor): # TODO: must be a better way than this - vectorised? grid_vals: list = [indx.left.min()] for interval in indx: increment = (interval.right - interval.left) / factor for i in range(0, factor): grid_vals.append(interval.left + (i + 1) * increment) grid_vals.sort() return grid_vals
[docs] def mass_preserving_interp_2d(intervals: pd.DataFrame, interval_edges: dict[str, Iterable], include_original_edges: bool = True, precision: Optional[int] = None, mass_dry: str = 'mass_dry') -> pd.DataFrame: """Interpolate 2D interval data with zero mass loss using pchip This function applies mass-preserving up-sampling to 2D interval data. The function will: - resample the first dimension using the mass_preserving_interp function - resample the second dimension using the mass_preserving_interp function at each of the new first dimension intervals - apply the upsampled mass proportions of the second dimension to the first dimension to create the final result Args: intervals: Dataframe with two pd.IntervalIndexes, in mass-composition space. interval_edges: Dict of the values of the new grid (interval edges) for each dimension, keyed by index name (dimension). include_original_edges: If True include the original index edges in the result precision: Number of decimal places to round the index (edge) values. mass_dry: The dry mass column, not optional. Consider solve_mass_moisture prior to this call if needed. Returns: """ # reduce the dataframe to the first dimension dim_1_name, dim_2_name = intervals.index.names[0], intervals.index.names[1] dim_1: pd.DataFrame = intervals.groupby(dim_1_name).apply(weight_average, **{'mass_dry': mass_dry}) # interpolate the first dimension dim_1_interp: pd.DataFrame = mass_preserving_interp(dim_1, interval_edges=interval_edges[dim_1_name], include_original_edges=include_original_edges, precision=precision, mass_dry=mass_dry) chunks: list = [] # iterate the original dim_1 fractions for dim_1_interval in dim_1.index: # reduce the dataframe to the second dimension for the current dim1 interval dim_2: pd.DataFrame = intervals.loc[dim_1_interval].copy() # interpolate the second dimension dim_2_interp: pd.DataFrame = mass_preserving_interp(dim_2, interval_edges=interval_edges[dim_2_name], include_original_edges=include_original_edges, precision=precision, mass_dry=mass_dry) # convert to recovery to enable proportioning of the interpolated dim_1 values dim_2_mass: pd.DataFrame = composition_to_mass(dim_2_interp, mass_dry=mass_dry) dim_2_deportment: pd.DataFrame = dim_2_mass.div(dim_2_mass.sum(axis=0), axis=1) # Filter the intervals from dim_1_interp that fall within the provided dim_1_interval, convert to mass filtered_intervals_mass = composition_to_mass( dim_1_interp.loc[dim_1_interp.index.map(lambda x: x.overlaps(dim_1_interval))].copy(), mass_dry=mass_dry) # expand the dimensions of the interpolated dim_1 data to include the second upsampled dimension for dim_1_interp_interval in filtered_intervals_mass.index: # proportion the dim_1 interpolated values by the dim_2 recovery new_vals: pd.DataFrame = dim_2_deportment.mul(filtered_intervals_mass.loc[dim_1_interp_interval].values) # create a multiindex by combining the dim_1 and dim_2 intervals new_index = pd.MultiIndex.from_arrays([pd.IntervalIndex([dim_1_interp_interval] * len(new_vals)), new_vals.index]) new_vals.index = new_index chunks.append(new_vals) # concatenate the results res: pd.DataFrame = pd.concat(chunks, axis=0) res.index.names = [dim_1_name, dim_2_name] # convert to composition res = mass_to_composition(res, mass_dry=mass_dry) return res