.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/300_interval_data_sink_float.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_300_interval_data_sink_float.py: Interval Data - Sink Float ========================== Intervals are encountered in Metallurgy, aka fractions, e.g. size fractions. In that case the typical nomenclature is size_retained, size passing, since the data originates from a sieve stack. The Sink Float metallurgical test splits/fractionates samples by density. The density fraction is often conducted by size fraction, resulting in 2D fractionation (interval) data. .. GENERATED FROM PYTHON SOURCE LINES 13-29 .. code-block:: default import logging from functools import partial from pathlib import Path import pandas as pd # noinspection PyUnresolvedReferences import numpy as np import plotly from elphick.mass_composition import MassComposition from elphick.mass_composition.datasets import datasets from elphick.mass_composition.datasets.sample_data import size_by_assay from elphick.mass_composition.flowsheet import Flowsheet from elphick.mass_composition.utils.partition import napier_munn .. GENERATED FROM PYTHON SOURCE LINES 30-34 .. code-block:: default logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt='%Y-%m-%dT%H:%M:%S%z') .. GENERATED FROM PYTHON SOURCE LINES 35-39 Load Data --------- We load some real data. .. GENERATED FROM PYTHON SOURCE LINES 40-44 .. code-block:: default df_data: pd.DataFrame = datasets.load_nordic_iron_ore_sink_float() df_data .. raw:: html
size_retained size_passing density_lo density_hi mass_pct Fe SiO2 P TiO2 V
0 1.000 NaN NaN NaN 0.4 22.7 50.9 0.042 0.170 0.0049
1 0.100 1.000 NaN NaN 67.1 27.3 47.7 0.107 0.178 0.0062
2 0.063 0.100 NaN NaN 12.7 18.0 57.8 0.440 0.200 0.0056
3 0.040 0.063 NaN NaN 8.2 16.9 57.1 0.610 0.235 0.0057
4 0.000 0.040 NaN NaN 11.6 19.4 51.6 0.650 0.310 0.0072
5 0.100 NaN NaN 2.7 54.2 1.2 1.6 0.180 0.084 0.0030
6 0.100 NaN 2.7 3.3 9.7 16.6 42.6 0.980 0.380 0.0100
7 0.100 NaN 3.3 NaN 36.1 68.0 78.8 0.033 0.285 0.0120
8 0.063 0.100 NaN 2.7 24.0 1.2 79.5 0.015 0.060 0.0070
9 0.063 0.100 2.7 3.3 11.9 10.2 54.0 2.320 0.280 0.0080
10 0.063 0.100 3.3 NaN 64.1 67.1 1.4 0.174 0.530 0.0020
11 0.040 0.063 NaN 2.7 76.6 3.1 71.3 0.850 0.145 0.0130
12 0.040 0.063 2.7 3.3 4.3 28.5 24.5 2.780 0.460 0.1100
13 0.040 0.063 3.3 NaN 19.1 68.6 0.6 0.069 0.480 0.0130


.. GENERATED FROM PYTHON SOURCE LINES 45-47 The dataset contains size x assay, plus size x density x assay data. We'll drop the size x assay data to leave the sink / float data. .. GENERATED FROM PYTHON SOURCE LINES 47-51 .. code-block:: default # df_sink_float: pd.DataFrame = df_data.query('density_lo != np.nan and density_hi != np.nan') # df_sink_float .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.346 seconds) .. _sphx_glr_download_auto_examples_300_interval_data_sink_float.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 300_interval_data_sink_float.py <300_interval_data_sink_float.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 300_interval_data_sink_float.ipynb <300_interval_data_sink_float.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_