.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/202_interval_data_advanced.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_202_interval_data_advanced.py: Interval Data - Advanced ======================== Intervals are encountered in Metallurgy, aka fractions, e.g. size fractions. In that case the typical nomenclature is size_retained, size passing, since the data originates from a sieve stack. This example walks through unifying the intervals across samples to be represented in the same network. Consider the case where the feed, oversize and undersize from a screening operation are sampled and sieved. It is likely that the undersize size distribution will be generated with fewer sieves in the sieve stack. If this data is not unified (made consistent) the network cannot be constructed - by unifying it we can construct a network and check the magnitude of any imbalance. .. GENERATED FROM PYTHON SOURCE LINES 15-28 .. code-block:: default import logging from functools import partial from pathlib import Path import pandas as pd import plotly from elphick.mass_composition import MassComposition from elphick.mass_composition.datasets.sample_data import size_by_assay from elphick.mass_composition.flowsheet import Flowsheet from elphick.mass_composition.utils.partition import napier_munn .. GENERATED FROM PYTHON SOURCE LINES 29-33 .. code-block:: default logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt='%Y-%m-%dT%H:%M:%S%z') .. GENERATED FROM PYTHON SOURCE LINES 34-38 Create some data ---------------- We get some demo sizing data, split it with a partition, and manually drop sieves for the undersize stream. .. GENERATED FROM PYTHON SOURCE LINES 39-46 .. code-block:: default # We create this object as 1D based on the pandas index. df_data: pd.DataFrame = size_by_assay() mc_feed: MassComposition = MassComposition(df_data, name='FEED') mc_feed.data.to_dataframe() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
size
[0.85, 2.0) 3.3 3.3 0.0 64.15 2.04 2.68
[0.5, 0.85) 9.9 9.9 0.0 64.33 2.05 2.23
[0.15, 0.5) 26.5 26.5 0.0 64.52 1.84 2.19
[0.075, 0.15) 2.5 2.5 0.0 62.65 2.88 3.32
[0.045, 0.075) 8.8 8.8 0.0 62.81 2.12 2.25
[0.0, 0.045) 49.0 49.0 0.0 55.95 6.39 6.34


.. GENERATED FROM PYTHON SOURCE LINES 47-48 We partially initialise a partition function, and split the feed stream accordingly. .. GENERATED FROM PYTHON SOURCE LINES 48-52 .. code-block:: default partition = partial(napier_munn, d50=0.150, ep=0.05, dim='size') mc_oversize, mc_undersize = mc_feed.split_by_partition(partition_definition=partition, name_1='OS', name_2='US') .. GENERATED FROM PYTHON SOURCE LINES 53-56 Drop the two size fractions from mc_fine that have near zero mass. This simulates a common situation where fines samples will likely have fewer fractions reported in the results. .. GENERATED FROM PYTHON SOURCE LINES 56-63 .. code-block:: default df_fine: pd.DataFrame = mc_undersize.data.to_dataframe() df_fine = df_fine.loc[df_fine.index.left < 0.5, :] mc_undersize.set_data(df_fine) mc_undersize.data.to_dataframe() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
size
[0.15, 0.5) 1.633999 1.633999 0.0 64.52 1.84 2.19
[0.075, 0.15) 1.810638 1.810638 0.0 62.65 2.88 3.32
[0.045, 0.075) 7.769423 7.769423 0.0 62.81 2.12 2.25
[0.0, 0.045) 46.291601 46.291601 0.0 55.95 6.39 6.34


.. GENERATED FROM PYTHON SOURCE LINES 64-65 Notice that the top two fractions are now missing. .. GENERATED FROM PYTHON SOURCE LINES 67-74 Unifying Indexes ---------------- If the dataset contains a single IntervalIndex called 'size' missing coarse size fractions will be added automatically. That said, the remaining sizes must be consistent. Alignment of sizes across streams/mc objects is coming soon. .. GENERATED FROM PYTHON SOURCE LINES 75-80 .. code-block:: default fs: Flowsheet = Flowsheet().from_streams([mc_feed, mc_oversize, mc_undersize]) fig = fs.table_plot() fig .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/flowsheet.py:1014: FutureWarning: The previous implementation of stack is deprecated and will be removed in a future version of pandas. See the What's New notes for pandas 2.1.0 for details. Specify future_stack=True to adopt the new implementation and silence this warning. .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 81-86 Troubleshooting the imbalance ----------------------------- So we now have our network, but it does not balance. Perhaps the fractions we removed to generate our test data contained enough mass to breach our balance threshold? Let's dig deeper with our balance plot. .. GENERATED FROM PYTHON SOURCE LINES 87-92 .. code-block:: default fig = fs.plot_balance(color='size') # noinspection PyTypeChecker plotly.io.show(fig) # this call to show will set the thumbnail for the gallery .. raw:: html :file: images/sphx_glr_202_interval_data_advanced_001.html .. GENERATED FROM PYTHON SOURCE LINES 93-94 What is the balance threshold set at? .. GENERATED FROM PYTHON SOURCE LINES 94-97 .. code-block:: default print('Node error tolerance:', fs.graph.nodes[1]['mc']._tolerance) .. rst-class:: sphx-glr-script-out .. code-block:: none Node error tolerance: 1.1920929e-07 .. GENERATED FROM PYTHON SOURCE LINES 98-99 That plot does not reveal the problem, so we'll resort to another report. .. GENERATED FROM PYTHON SOURCE LINES 99-102 .. code-block:: default fs.graph.nodes[1]['mc']._balance_errors .. raw:: html
mass_wet mass_dry Fe SiO2 Al2O3
size
[0.5, 0.85) 0.00016 0.00016 0.000103 0.000003 0.000004


.. GENERATED FROM PYTHON SOURCE LINES 103-104 Let's change the node error tolerance. .. GENERATED FROM PYTHON SOURCE LINES 104-109 .. code-block:: default fs.graph.nodes[1]['mc']._tolerance = 0.001 fig = fs.table_plot() fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 110-113 .. admonition:: TODO Create a single imbalance report across the entire network. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.112 seconds) .. _sphx_glr_download_auto_examples_202_interval_data_advanced.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 202_interval_data_advanced.py <202_interval_data_advanced.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 202_interval_data_advanced.ipynb <202_interval_data_advanced.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_