.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/201_incremental_separation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_201_incremental_separation.py: Incremental Separation ====================== This method sorts by the provided direction prior to incrementally removing and discarding the first fraction (of the remaining fractions) and recalculating the mass-composition and recovery of the portion remaining. This is equivalent to incrementally applying a perfect separation (partition) at every interval edge. The returned data can be used to assess the amenability of a fractionated sample (in the dimension of the sample). This concept is only applicable in a single dimension where the mass-composition (sample) object is an interval index. The example will use a dataset that represents a sample fractionated by size. .. GENERATED FROM PYTHON SOURCE LINES 16-24 .. code-block:: default import logging import pandas as pd import plotly from elphick.mass_composition import MassComposition from elphick.mass_composition.datasets.sample_data import size_by_assay .. GENERATED FROM PYTHON SOURCE LINES 25-28 .. code-block:: default logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt='%Y-%m-%dT%H:%M:%S%z') .. GENERATED FROM PYTHON SOURCE LINES 29-33 Create the sample ----------------- The sample is a MassComposition object .. GENERATED FROM PYTHON SOURCE LINES 33-37 .. code-block:: default df_data: pd.DataFrame = size_by_assay() df_data .. raw:: html
mass_dry fe sio2 al2o3
size_retained size_passing
0.850 2.000 3.3 64.15 2.04 2.68
0.500 0.850 9.9 64.33 2.05 2.23
0.150 0.500 26.5 64.52 1.84 2.19
0.075 0.150 2.5 62.65 2.88 3.32
0.045 0.075 8.8 62.81 2.12 2.25
0.000 0.045 49.0 55.95 6.39 6.34


.. GENERATED FROM PYTHON SOURCE LINES 38-39 The size index is of the Interval type, maintaining the fractional information. .. GENERATED FROM PYTHON SOURCE LINES 39-43 .. code-block:: default mc_size: MassComposition = MassComposition(df_data, name='Sample') mc_size.data.to_dataframe .. rst-class:: sphx-glr-script-out .. code-block:: none Size: 336B Dimensions: (size: 6) Coordinates: * size (size) object 48B [0.85, 2.0) [0.5, 0.85) ... [0.0, 0.045) Data variables: mass_wet (size) float64 48B 3.3 9.9 26.5 2.5 8.8 49.0 mass_dry (size) float64 48B 3.3 9.9 26.5 2.5 8.8 49.0 H2O (size) float64 48B 0.0 0.0 0.0 0.0 0.0 0.0 Fe (size) float64 48B 64.15 64.33 64.52 62.65 62.81 55.95 SiO2 (size) float64 48B 2.04 2.05 1.84 2.88 2.12 6.39 Al2O3 (size) float64 48B 2.68 2.23 2.19 3.32 2.25 6.34 Attributes: mc_name: Sample mc_vars_mass: ['mass_wet', 'mass_dry'] mc_vars_chem: ['Fe', 'SiO2', 'Al2O3'] mc_vars_attrs: [] mc_interval_edges: {'size': {'left': 'retained', 'right': 'passing'}}> .. GENERATED FROM PYTHON SOURCE LINES 44-49 Incrementally Separate ---------------------- Leverage the method to return the incremental perfect separation in the size dimension. Here we will "de-slime" by discarding the smallest (lowest) sizes incrementally. .. GENERATED FROM PYTHON SOURCE LINES 49-53 .. code-block:: default results: pd.DataFrame = mc_size.ideal_incremental_separation(discard_from="lowest") results .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
size_cut-point attribute
0.850 composition 3.300 3.300 0.0 64.150000 2.040000 2.680000
0.500 composition 13.200 13.200 0.0 64.285000 2.047500 2.342500
0.150 composition 39.700 39.700 0.0 64.441864 1.908992 2.240705
0.075 composition 42.200 42.200 0.0 64.335711 1.966517 2.304645
0.045 composition 51.000 51.000 0.0 64.072451 1.993000 2.295216
0.000 composition 100.000 100.000 0.0 60.092450 4.147530 4.277160
0.850 recovery 0.033 0.033 NaN 0.035228 0.016231 0.020677
0.500 recovery 0.132 0.132 NaN 0.141209 0.065164 0.072293
0.150 recovery 0.397 0.397 NaN 0.425734 0.182728 0.207979
0.075 recovery 0.422 0.422 NaN 0.451798 0.200088 0.227385
0.045 recovery 0.510 0.510 NaN 0.543778 0.245069 0.273677
0.000 recovery 1.000 1.000 NaN 1.000000 1.000000 1.000000


.. GENERATED FROM PYTHON SOURCE LINES 54-55 Repeat the process but by discarding the coarser sizes. .. GENERATED FROM PYTHON SOURCE LINES 55-59 .. code-block:: default results_2: pd.DataFrame = mc_size.ideal_incremental_separation(discard_from="highest") results_2 .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
size_cut-point attribute
2.000 composition 100.000 100.000 0.0 60.092450 4.147530 4.277160
0.850 composition 96.700 96.700 0.0 59.953981 4.219452 4.331665
0.500 composition 86.800 86.800 0.0 59.454873 4.466889 4.571371
0.150 composition 60.300 60.300 0.0 57.228905 5.621327 5.617910
0.075 composition 57.800 57.800 0.0 56.994429 5.739896 5.717301
0.045 composition 49.000 49.000 0.0 55.950000 6.390000 6.340000
2.000 recovery 1.000 1.000 NaN 1.000000 1.000000 1.000000
0.850 recovery 0.967 0.967 NaN 0.964772 0.983769 0.979323
0.500 recovery 0.868 0.868 NaN 0.858791 0.934836 0.927707
0.150 recovery 0.603 0.603 NaN 0.574266 0.817272 0.792021
0.075 recovery 0.578 0.578 NaN 0.548202 0.799912 0.772615
0.045 recovery 0.490 0.490 NaN 0.456222 0.754931 0.726323


.. GENERATED FROM PYTHON SOURCE LINES 60-62 Plot Grade-Recovery ------------------- .. GENERATED FROM PYTHON SOURCE LINES 62-67 .. code-block:: default fig = mc_size.plot_grade_recovery(target_analyte='Fe') fig.update_layout(height=800) fig .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 68-69 Discard the highest (coarsest) sizes. As expected the response differs. .. GENERATED FROM PYTHON SOURCE LINES 69-73 .. code-block:: default fig = mc_size.plot_grade_recovery(target_analyte='Fe', discard_from="highest") fig.update_layout(height=800) .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 74-83 Plot Amenability ---------------- The Amenability Index (AI) will generally range between zero and one, but can in fact be legitimately negative. The closer the AI is to 1.0, the more amenable the ore is to separation of that particular gangue component relative to the target analyte. The AI is shown in the legend (in brackets). The plot below suggests that SiO2 is marginally more amenable than Al2O3 across the spectrum of yield for this sample. .. GENERATED FROM PYTHON SOURCE LINES 83-89 .. code-block:: default fig = mc_size.plot_amenability(target_analyte='Fe') fig.update_layout(height=800) # noinspection PyTypeChecker plotly.io.show(fig) .. raw:: html :file: images/sphx_glr_201_incremental_separation_001.html .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. GENERATED FROM PYTHON SOURCE LINES 90-93 Discard the highest (coarsest) sizes. As expected the response differs. The Amenability indices are negative indicating a downgrade, rather than an upgrade. This demonstrates that desliming is a plausible pathway to beneficiating this sample, while "coarse scalping" is not. .. GENERATED FROM PYTHON SOURCE LINES 93-97 .. code-block:: default fig = mc_size.plot_amenability(target_analyte='Fe', discard_from="highest") fig.update_layout(height=800) fig .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/mass-composition/mass-composition/elphick/mass_composition/mass_composition.py:1386: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`. .. raw:: html


.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.361 seconds) .. _sphx_glr_download_auto_examples_201_incremental_separation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 201_incremental_separation.py <201_incremental_separation.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 201_incremental_separation.ipynb <201_incremental_separation.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_