.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/115_simplify_network.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_115_simplify_network.py: Simplify a Network ================== There are times when a simplified view of a complex network is required, to provide a summary of the overall mass-balance. This can be achieved by collapsing the network into a single node, which represents the system internals. This is useful for high-level reporting and visualisation. In this example, we will demonstrate how to simplify a network using the `to_simple` method. .. GENERATED FROM PYTHON SOURCE LINES 12-24 .. code-block:: default import plotly import pandas as pd from functools import partial from elphick.mass_composition.flowsheet import Flowsheet from elphick.mass_composition.utils.partition import perfect, napier_munn from elphick.mass_composition.datasets.sample_data import size_by_assay from elphick.mass_composition import MassComposition # sphinx_gallery_thumbnail_number = -1 .. GENERATED FROM PYTHON SOURCE LINES 25-29 Create a network ---------------- We create the same network as in the [Compare Partition Separations](#compare-partition-separations) example. .. GENERATED FROM PYTHON SOURCE LINES 30-49 .. code-block:: default mc_size: MassComposition = MassComposition(size_by_assay(), name='size sample') mc_ideal_feed, mc_sim_feed = mc_size.split(0.5, 'ideal feed', 'sim feed') part_ideal = partial(perfect, d50=0.150, dim='size') part_sim = partial(napier_munn, d50=0.150, ep=0.1, dim='size') # Separate the object using the defined partitions mc_ideal_coarse, mc_ideal_fine = mc_ideal_feed.split_by_partition(partition_definition=part_ideal, name_1='ideal_coarse', name_2='ideal_fine') mc_sim_coarse, mc_sim_fine = mc_sim_feed.split_by_partition(partition_definition=part_sim, name_1='sim_coarse', name_2='sim_fine') fs: Flowsheet = Flowsheet().from_streams([mc_size, mc_ideal_feed, mc_sim_feed, mc_ideal_coarse, mc_ideal_fine, mc_sim_coarse, mc_sim_fine]) fig = fs.table_plot(table_pos='left', sankey_color_var='Fe', sankey_edge_colormap='copper_r', sankey_vmin=50, sankey_vmax=70) fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 50-52 Simplify the Network -------------------- .. GENERATED FROM PYTHON SOURCE LINES 52-59 .. code-block:: default fs_simple = fs.to_simple(node_name='system') fig = fs_simple.table_plot(table_pos='left', sankey_color_var='Fe', sankey_edge_colormap='copper_r', sankey_vmin=50, sankey_vmax=70) # noinspection PyTypeChecker plotly.io.show(fig) # this call to show will set the thumbnail for use in the gallery .. raw:: html :file: images/sphx_glr_115_simplify_network_001.html .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.374 seconds) .. _sphx_glr_download_auto_examples_115_simplify_network.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 115_simplify_network.py <115_simplify_network.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 115_simplify_network.ipynb <115_simplify_network.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_