.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/114_compare_partitions.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_114_compare_partitions.py: Compare Partition Separations ============================= Demonstrate splitting a single sample and applying two different partition models along a dimension. We will compare an ideal (perfect) partition with that with the partition model of Napier-Munn (1998) This demonstrates why using only ore characterisation data to infer plant performance is dangerous. The robust method uses ore characterisation and process characterisation (partition) data The two cases tested are: * IDEAL - Perfect partition, represents using ore characterisation data only * SIM - Simulated reality with Napier-Munn partition, represents using ore characterisation and process characterisation data. .. note:: The Ep parameter injected to the Napier-Munn partition is speculative - for illustrative purposes only. .. GENERATED FROM PYTHON SOURCE LINES 22-34 .. code-block:: default import plotly import pandas as pd from functools import partial from elphick.mass_composition.flowsheet import Flowsheet from elphick.mass_composition.utils.partition import perfect, napier_munn from elphick.mass_composition.datasets.sample_data import size_by_assay from elphick.mass_composition import MassComposition # sphinx_gallery_thumbnail_number = -1 .. GENERATED FROM PYTHON SOURCE LINES 35-39 Create a mass-composition object -------------------------------- We get some demo data in the form of a pandas DataFrame .. GENERATED FROM PYTHON SOURCE LINES 40-49 .. code-block:: default df_data: pd.DataFrame = size_by_assay() df_data # # since we intend to split the sample in half, we'll re-base the original mass to 200, # for easier interpretation later. df_data['mass_dry'] = df_data['mass_dry'] * 2 .. GENERATED FROM PYTHON SOURCE LINES 50-51 Create the object .. GENERATED FROM PYTHON SOURCE LINES 51-56 .. code-block:: default mc_size: MassComposition = MassComposition(df_data, name='size sample') print(mc_size) mc_size.aggregate() .. rst-class:: sphx-glr-script-out .. code-block:: none size sample Size: 336B Dimensions: (size: 6) Coordinates: * size (size) object 48B [0.85, 2.0) [0.5, 0.85) ... [0.0, 0.045) Data variables: mass_wet (size) float64 48B 6.6 19.8 53.0 5.0 17.6 98.0 mass_dry (size) float64 48B 6.6 19.8 53.0 5.0 17.6 98.0 H2O (size) float64 48B 0.0 0.0 0.0 0.0 0.0 0.0 Fe (size) float64 48B 64.15 64.33 64.52 62.65 62.81 55.95 SiO2 (size) float64 48B 2.04 2.05 1.84 2.88 2.12 6.39 Al2O3 (size) float64 48B 2.68 2.23 2.19 3.32 2.25 6.34 Attributes: mc_name: size sample mc_vars_mass: ['mass_wet', 'mass_dry'] mc_vars_chem: ['Fe', 'SiO2', 'Al2O3'] mc_vars_attrs: [] mc_interval_edges: {'size': {'left': 'retained', 'right': 'passing'}} .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
name
size sample 200.0 200.0 0.0 60.09245 4.14753 4.27716


.. GENERATED FROM PYTHON SOURCE LINES 57-58 Visualise the data .. GENERATED FROM PYTHON SOURCE LINES 58-62 .. code-block:: default fig = mc_size.plot_parallel(color='Fe') fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 63-65 Split the Sample ---------------- .. GENERATED FROM PYTHON SOURCE LINES 65-68 .. code-block:: default mc_ideal_feed, mc_sim_feed = mc_size.split(0.5, 'ideal feed', 'sim feed') .. GENERATED FROM PYTHON SOURCE LINES 69-74 Apply the Partitions -------------------- We partially initialise the two partitions The dim argument is added to inform the split method which dimension to apply the function/split to .. GENERATED FROM PYTHON SOURCE LINES 74-78 .. code-block:: default part_ideal = partial(perfect, d50=0.150, dim='size') part_sim = partial(napier_munn, d50=0.150, ep=0.1, dim='size') .. GENERATED FROM PYTHON SOURCE LINES 79-80 Separate the object using the defined partitions .. GENERATED FROM PYTHON SOURCE LINES 81-96 .. code-block:: default mc_ideal_coarse, mc_ideal_fine = mc_ideal_feed.split_by_partition(partition_definition=part_ideal, name_1='ideal_coarse', name_2='ideal_fine') mc_sim_coarse, mc_sim_fine = mc_sim_feed.split_by_partition(partition_definition=part_sim, name_1='sim_coarse', name_2='sim_fine') fs: Flowsheet = Flowsheet().from_streams([mc_size, mc_ideal_feed, mc_sim_feed, mc_ideal_coarse, mc_ideal_fine, mc_sim_coarse, mc_sim_fine]) fig = fs.table_plot(table_pos='left', sankey_color_var='Fe', sankey_edge_colormap='copper_r', sankey_vmin=50, sankey_vmax=70) # noinspection PyTypeChecker plotly.io.show(fig) # this call to show will set the thumbnail for use in the gallery .. raw:: html :file: images/sphx_glr_114_compare_partitions_001.html .. GENERATED FROM PYTHON SOURCE LINES 97-103 .. note:: The mass split and grades are different as shown in the table above. The difference in coarse yield (mass recovery) of the two cases is 7.4%. More work reviewing recovery of components in both cases would be prudent. This is illustrative only but demonstrates why using ore characterisation and ignoring process characterisation to capture the real world process inefficiencies is dangerous. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.973 seconds) .. _sphx_glr_download_auto_examples_114_compare_partitions.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 114_compare_partitions.py <114_compare_partitions.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 114_compare_partitions.ipynb <114_compare_partitions.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_