.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/112_compare.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_112_compare.py: Compare ======= Consistent MassComposition objects can be compared. Objects generated by math operations, or connected in an Flowsheet are candidates for comparison. Comparison can be performed by: - recovery - difference - divide .. GENERATED FROM PYTHON SOURCE LINES 14-22 .. code-block:: default import pandas as pd import plotly import xarray as xr from elphick.mass_composition import MassComposition from elphick.mass_composition.datasets.sample_data import sample_data .. GENERATED FROM PYTHON SOURCE LINES 23-27 Create a MassComposition object ------------------------------- We get some demo data in the form of a pandas DataFrame .. GENERATED FROM PYTHON SOURCE LINES 28-32 .. code-block:: default df_data: pd.DataFrame = sample_data() df_data .. raw:: html
wet_mass mass_dry FE SIO2 al2o3 LOI group
index
0 100.0 90.0 57.0 5.2 3.0 5.0 grp_1
1 90.0 80.0 59.0 3.1 1.7 4.0 grp_1
2 110.0 90.0 61.0 2.2 0.9 3.0 grp_2


.. GENERATED FROM PYTHON SOURCE LINES 33-34 Construct a MassComposition object .. GENERATED FROM PYTHON SOURCE LINES 34-38 .. code-block:: default obj_mc: MassComposition = MassComposition(df_data, name='product') obj_mc.data.to_dataframe() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI group
index
0 100.0 90.0 10.000000 57.0 5.2 3.0 5.0 grp_1
1 90.0 80.0 11.111111 59.0 3.1 1.7 4.0 grp_1
2 110.0 90.0 18.181818 61.0 2.2 0.9 3.0 grp_2


.. GENERATED FROM PYTHON SOURCE LINES 39-48 Compare by Recovery ------------------- Recovery for an object is defined as the proportion of component mass compared with (divided by) the component mass of another object. In mineral processing recovery is often used to compare the recovered "metal" in product compared to what was fed. Recovery is also an important metric when considering internal separation circuits inside a larger facility. In this example we'll simply double the test object and call it 'feed' .. GENERATED FROM PYTHON SOURCE LINES 49-53 .. code-block:: default obj_mc_ref: MassComposition = obj_mc.add(obj_mc, name='feed') obj_mc_ref.data.to_dataframe() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI group
index
0 200.0 180.0 10.000000 57.0 5.2 3.0 5.0 grp_1
1 180.0 160.0 11.111111 59.0 3.1 1.7 4.0 grp_1
2 220.0 180.0 18.181818 61.0 2.2 0.9 3.0 grp_2


.. GENERATED FROM PYTHON SOURCE LINES 54-57 .. code-block:: default rec_1: pd.DataFrame = obj_mc.compare(comparisons='recovery', other=obj_mc_ref) rec_1 .. raw:: html
product_mass_wet_rec_feed product_mass_dry_rec_feed product_H2O_rec_feed product_Fe_rec_feed product_SiO2_rec_feed product_Al2O3_rec_feed product_LOI_rec_feed
index
0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 0.5 0.5 0.5 0.5 0.5 0.5 0.5


.. GENERATED FROM PYTHON SOURCE LINES 58-59 By default the variable names are explicit for clarity, though the basic variables names can be preserved. .. GENERATED FROM PYTHON SOURCE LINES 59-63 .. code-block:: default rec_2: pd.DataFrame = obj_mc.compare(comparisons='recovery', other=obj_mc_ref, explicit_names=False) rec_2 .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI
index
0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 0.5 0.5 0.5 0.5 0.5 0.5 0.5


.. GENERATED FROM PYTHON SOURCE LINES 64-65 An xarray Dataset can be returned if desired. .. GENERATED FROM PYTHON SOURCE LINES 65-69 .. code-block:: default rec_3: xr.Dataset = obj_mc.compare(comparisons='recovery', other=obj_mc_ref, explicit_names=False, as_dataframe=False) rec_3 .. raw:: html
<xarray.Dataset> Size: 192B
    Dimensions:   (index: 3)
    Coordinates:
      * index     (index) int64 24B 0 1 2
    Data variables:
        mass_wet  (index) float64 24B 0.5 0.5 0.5
        mass_dry  (index) float64 24B 0.5 0.5 0.5
        H2O       (index) float64 24B 0.5 0.5 0.5
        Fe        (index) float64 24B 0.5 0.5 0.5
        SiO2      (index) float64 24B 0.5 0.5 0.5
        Al2O3     (index) float64 24B 0.5 0.5 0.5
        LOI       (index) float64 24B 0.5 0.5 0.5


.. GENERATED FROM PYTHON SOURCE LINES 70-75 Compare by Difference --------------------- Comparing by difference simply subtracts mass and composition. No conversion of composition to mass units is made. .. GENERATED FROM PYTHON SOURCE LINES 76-80 .. code-block:: default rec_4: pd.DataFrame = obj_mc.compare(comparisons='difference', other=obj_mc_ref) rec_4 .. raw:: html
product_mass_wet_diff_feed product_mass_dry_diff_feed product_H2O_diff_feed product_Fe_diff_feed product_SiO2_diff_feed product_Al2O3_diff_feed product_LOI_diff_feed
index
0 -100.0 -90.0 0.0 7.105427e-15 0.0 -4.440892e-16 0.000000e+00
1 -90.0 -80.0 0.0 -7.105427e-15 0.0 -2.220446e-16 0.000000e+00
2 -110.0 -90.0 0.0 0.000000e+00 0.0 -1.110223e-16 -4.440892e-16


.. GENERATED FROM PYTHON SOURCE LINES 81-86 Compare by Division -------------------- Comparing by simply dividing mass and composition. No conversion of composition to mass units is made. In the mineral processing context, the result may be described as the "upgrade ratio". .. GENERATED FROM PYTHON SOURCE LINES 87-91 .. code-block:: default rec_5: pd.DataFrame = obj_mc.compare(comparisons='divide', other=obj_mc_ref) rec_5 .. raw:: html
product_mass_wet_ur_feed product_mass_dry_ur_feed product_H2O_ur_feed product_Fe_ur_feed product_SiO2_ur_feed product_Al2O3_ur_feed product_LOI_ur_feed
index
0 0.5 0.5 1.0 1.0 1.0 1.0 1.0
1 0.5 0.5 1.0 1.0 1.0 1.0 1.0
2 0.5 0.5 1.0 1.0 1.0 1.0 1.0


.. GENERATED FROM PYTHON SOURCE LINES 92-96 Multiple Comparisons -------------------- More than one comparison can be performed at once. .. GENERATED FROM PYTHON SOURCE LINES 97-101 .. code-block:: default rec_6: pd.DataFrame = obj_mc.compare(comparisons=['recovery', 'divide'], other=obj_mc_ref) rec_6.T .. raw:: html
index 0 1 2
product_mass_wet_rec_feed 0.5 0.5 0.5
product_mass_dry_rec_feed 0.5 0.5 0.5
product_H2O_rec_feed 0.5 0.5 0.5
product_Fe_rec_feed 0.5 0.5 0.5
product_SiO2_rec_feed 0.5 0.5 0.5
product_Al2O3_rec_feed 0.5 0.5 0.5
product_LOI_rec_feed 0.5 0.5 0.5
product_mass_wet_ur_feed 0.5 0.5 0.5
product_mass_dry_ur_feed 0.5 0.5 0.5
product_H2O_ur_feed 1.0 1.0 1.0
product_Fe_ur_feed 1.0 1.0 1.0
product_SiO2_ur_feed 1.0 1.0 1.0
product_Al2O3_ur_feed 1.0 1.0 1.0
product_LOI_ur_feed 1.0 1.0 1.0


.. GENERATED FROM PYTHON SOURCE LINES 102-103 Or using "all" .. GENERATED FROM PYTHON SOURCE LINES 103-107 .. code-block:: default rec_7: pd.DataFrame = obj_mc.compare(comparisons='all', other=obj_mc_ref) rec_7.T .. raw:: html
index 0 1 2
product_mass_wet_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_mass_dry_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_H2O_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_Fe_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_SiO2_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_Al2O3_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_LOI_rec_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_mass_wet_diff_feed -1.000000e+02 -9.000000e+01 -1.100000e+02
product_mass_dry_diff_feed -9.000000e+01 -8.000000e+01 -9.000000e+01
product_H2O_diff_feed 0.000000e+00 0.000000e+00 0.000000e+00
product_Fe_diff_feed 7.105427e-15 -7.105427e-15 0.000000e+00
product_SiO2_diff_feed 0.000000e+00 0.000000e+00 0.000000e+00
product_Al2O3_diff_feed -4.440892e-16 -2.220446e-16 -1.110223e-16
product_LOI_diff_feed 0.000000e+00 0.000000e+00 -4.440892e-16
product_mass_wet_ur_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_mass_dry_ur_feed 5.000000e-01 5.000000e-01 5.000000e-01
product_H2O_ur_feed 1.000000e+00 1.000000e+00 1.000000e+00
product_Fe_ur_feed 1.000000e+00 1.000000e+00 1.000000e+00
product_SiO2_ur_feed 1.000000e+00 1.000000e+00 1.000000e+00
product_Al2O3_ur_feed 1.000000e+00 1.000000e+00 1.000000e+00
product_LOI_ur_feed 1.000000e+00 1.000000e+00 1.000000e+00


.. GENERATED FROM PYTHON SOURCE LINES 108-112 Comparison Plot --------------- This plot compares one stream against another, with one component per subplot. .. GENERATED FROM PYTHON SOURCE LINES 112-117 .. code-block:: default fig = obj_mc.plot_comparison(other=obj_mc_ref) fig.update_layout(height=600) fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 118-120 With color, excluded variable, and trendline. The trendline is per color (group). Since grp2 is a single point, no trendline applies. .. GENERATED FROM PYTHON SOURCE LINES 120-125 .. code-block:: default fig = obj_mc.plot_comparison(other=obj_mc_ref, vars_exclude=['H2O'], color='group', trendline=True) fig.update_layout(height=600) # noinspection PyArgumentList,PyTypeChecker plotly.io.show(fig) .. raw:: html :file: images/sphx_glr_112_compare_001.html .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.571 seconds) .. _sphx_glr_download_auto_examples_112_compare.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 112_compare.py <112_compare.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 112_compare.ipynb <112_compare.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_