.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/109_split_and_partition.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_109_split_and_partition.py: Splitting and Partitioning Objects ================================== Demonstrate splitting by mass and partitioning along dimensions. .. GENERATED FROM PYTHON SOURCE LINES 7-18 .. code-block:: default import plotly import pandas as pd from functools import partial from elphick.mass_composition.flowsheet import Flowsheet from elphick.mass_composition.utils.partition import perfect from elphick.mass_composition.datasets.sample_data import sample_data, size_by_assay from elphick.mass_composition import MassComposition # sphinx_gallery_thumbnail_number = -1 .. GENERATED FROM PYTHON SOURCE LINES 19-23 Create a mass-composition (mc) enabled Xarray Dataset ----------------------------------------------------- We get some demo data in the form of a pandas DataFrame .. GENERATED FROM PYTHON SOURCE LINES 24-28 .. code-block:: default df_data: pd.DataFrame = sample_data() df_data.head() .. raw:: html
wet_mass mass_dry FE SIO2 al2o3 LOI group
index
0 100.0 90.0 57.0 5.2 3.0 5.0 grp_1
1 90.0 80.0 59.0 3.1 1.7 4.0 grp_1
2 110.0 90.0 61.0 2.2 0.9 3.0 grp_2


.. GENERATED FROM PYTHON SOURCE LINES 29-36 .. code-block:: default # Construct a MassComposition object and standardise the chemistry variables obj_mc: MassComposition = MassComposition(df_data, name='test data') print(obj_mc) obj_mc.aggregate() .. rst-class:: sphx-glr-script-out .. code-block:: none test data Size: 216B Dimensions: (index: 3) Coordinates: * index (index) int64 24B 0 1 2 Data variables: mass_wet (index) float64 24B 100.0 90.0 110.0 mass_dry (index) float64 24B 90.0 80.0 90.0 H2O (index) float64 24B 10.0 11.11 18.18 Fe (index) float64 24B 57.0 59.0 61.0 SiO2 (index) float64 24B 5.2 3.1 2.2 Al2O3 (index) float64 24B 3.0 1.7 0.9 LOI (index) float64 24B 5.0 4.0 3.0 group (index) object 24B 'grp_1' 'grp_1' 'grp_2' Attributes: mc_name: test data mc_vars_mass: ['mass_wet', 'mass_dry'] mc_vars_chem: ['Fe', 'SiO2', 'Al2O3', 'LOI'] mc_vars_attrs: ['group'] mc_interval_edges: {} .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI
name
test data 300.0 260.0 13.333333 59.0 3.515385 1.873077 4.0


.. GENERATED FROM PYTHON SOURCE LINES 37-42 Split by Mass ------------- Split the original Dataset by mass and return both the defined split and complement objects. Splitting with a float, splits mass but does not modify the absolute grade of the input. .. GENERATED FROM PYTHON SOURCE LINES 43-48 .. code-block:: default obj_mc_split, obj_mc_comp = obj_mc.split(fraction=0.1) print(obj_mc_split) obj_mc_split.aggregate() .. rst-class:: sphx-glr-script-out .. code-block:: none (0.1 * test data) Size: 216B Dimensions: (index: 3) Coordinates: * index (index) int64 24B 0 1 2 Data variables: mass_wet (index) float64 24B 10.0 9.0 11.0 mass_dry (index) float64 24B 9.0 8.0 9.0 H2O (index) float64 24B 10.0 11.11 18.18 Fe (index) float64 24B 57.0 59.0 61.0 SiO2 (index) float64 24B 5.2 3.1 2.2 Al2O3 (index) float64 24B 3.0 1.7 0.9 LOI (index) float64 24B 5.0 4.0 3.0 group (index) object 24B 'grp_1' 'grp_1' 'grp_2' Attributes: mc_name: (0.1 * test data) mc_vars_mass: ['mass_wet', 'mass_dry'] mc_vars_chem: ['Fe', 'SiO2', 'Al2O3', 'LOI'] mc_vars_attrs: ['group'] mc_interval_edges: {} .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI
name
(0.1 * test data) 30.0 26.0 13.333333 59.0 3.515385 1.873077 4.0


.. GENERATED FROM PYTHON SOURCE LINES 49-51 .. code-block:: default obj_mc_comp.aggregate() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI
name
(0.9 * test data) 270.0 234.0 13.333333 59.0 3.515385 1.873077 4.0


.. GENERATED FROM PYTHON SOURCE LINES 52-53 Add the split and complement parts using the mc.add method .. GENERATED FROM PYTHON SOURCE LINES 54-58 .. code-block:: default obj_mc_sum: MassComposition = obj_mc_split + obj_mc_comp obj_mc_sum.aggregate() .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3 LOI
name
((0.1 * test data) + (0.9 * test data)) 300.0 260.0 13.333333 59.0 3.515385 1.873077 4.0


.. GENERATED FROM PYTHON SOURCE LINES 59-60 Confirm the sum of the splits is materially equivalent to the starting object. .. GENERATED FROM PYTHON SOURCE LINES 61-64 .. code-block:: default pd.testing.assert_frame_equal(obj_mc.data.to_dataframe(), obj_mc_sum.data.to_dataframe()) .. GENERATED FROM PYTHON SOURCE LINES 65-75 Partition by Dimension ---------------------- In mineral processing, unit operations separate particles based on one (or more) property. Consider a sizing screen, separating by size. The characteristics of such separations can be defined by a function. The function is often called a partition curve or tromp curve. First we load a size x assay dataset, with size fractions as the index. While the data is multidimensional (considering all assays), from the MassComposition object definition it is a 1D dataset (indexed by size). .. GENERATED FROM PYTHON SOURCE LINES 76-80 .. code-block:: default df_data: pd.DataFrame = size_by_assay() df_data .. raw:: html
mass_dry fe sio2 al2o3
size_retained size_passing
0.850 2.000 3.3 64.15 2.04 2.68
0.500 0.850 9.9 64.33 2.05 2.23
0.150 0.500 26.5 64.52 1.84 2.19
0.075 0.150 2.5 62.65 2.88 3.32
0.045 0.075 8.8 62.81 2.12 2.25
0.000 0.045 49.0 55.95 6.39 6.34


.. GENERATED FROM PYTHON SOURCE LINES 81-82 Create the object .. GENERATED FROM PYTHON SOURCE LINES 82-87 .. code-block:: default mc_size: MassComposition = MassComposition(df_data, name='size sample') print(mc_size) mc_size.aggregate() .. rst-class:: sphx-glr-script-out .. code-block:: none size sample Size: 336B Dimensions: (size: 6) Coordinates: * size (size) object 48B [0.85, 2.0) [0.5, 0.85) ... [0.0, 0.045) Data variables: mass_wet (size) float64 48B 3.3 9.9 26.5 2.5 8.8 49.0 mass_dry (size) float64 48B 3.3 9.9 26.5 2.5 8.8 49.0 H2O (size) float64 48B 0.0 0.0 0.0 0.0 0.0 0.0 Fe (size) float64 48B 64.15 64.33 64.52 62.65 62.81 55.95 SiO2 (size) float64 48B 2.04 2.05 1.84 2.88 2.12 6.39 Al2O3 (size) float64 48B 2.68 2.23 2.19 3.32 2.25 6.34 Attributes: mc_name: size sample mc_vars_mass: ['mass_wet', 'mass_dry'] mc_vars_chem: ['Fe', 'SiO2', 'Al2O3'] mc_vars_attrs: [] mc_interval_edges: {'size': {'left': 'retained', 'right': 'passing'}} .. raw:: html
mass_wet mass_dry H2O Fe SiO2 Al2O3
name
size sample 100.0 100.0 0.0 60.09245 4.14753 4.27716


.. GENERATED FROM PYTHON SOURCE LINES 88-89 Visualise the data .. GENERATED FROM PYTHON SOURCE LINES 89-93 .. code-block:: default fig = mc_size.plot_parallel(color='Fe') fig .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 94-96 We partially initialise the perfect partition function The dim argument is added to inform the split method which dimension to apply the function/split to .. GENERATED FROM PYTHON SOURCE LINES 97-100 .. code-block:: default partition = partial(perfect, d50=0.150, dim='size') .. GENERATED FROM PYTHON SOURCE LINES 101-102 Separate the object using the defined partition .. GENERATED FROM PYTHON SOURCE LINES 103-112 .. code-block:: default mc_coarse, mc_fine = mc_size.split_by_partition(partition_definition=partition) mc_coarse.name = 'coarse' mc_fine.name = 'fine' fs: Flowsheet = Flowsheet().from_streams([mc_size, mc_coarse, mc_fine]) fig = fs.plot_network() fig.show() .. GENERATED FROM PYTHON SOURCE LINES 113-118 .. code-block:: default fig = fs.table_plot(table_pos='top', sankey_color_var='Fe', sankey_edge_colormap='copper_r', sankey_vmin=50, sankey_vmax=70) # noinspection PyTypeChecker plotly.io.show(fig) # this call to show will set the thumbnail for use in the gallery .. raw:: html :file: images/sphx_glr_109_split_and_partition_001.html .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.849 seconds) .. _sphx_glr_download_auto_examples_109_split_and_partition.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 109_split_and_partition.py <109_split_and_partition.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 109_split_and_partition.ipynb <109_split_and_partition.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_